Министерство образования и науки Российской Федерации Уральский федеральный университет имени первого Президента России Б. Н. Ельцина

ИЗУЧЕНИЕ ЗАКОНОВ ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ НА МАЯТНИКЕ ОБЕРБЕКА

Методические указания к лабораторной работе № 9 по физике

Екатеринбург

УрФУ

2012

УДК 531.15:531.53 (076.5)

Составители: В. Б. Демин, В. П. Левченко, К. А. Шумихина, А. Г. Волков Научный редактор – д-р физ.-мат. наук, проф. А. А. Повзнер

Изучение законов вращательного движения на маятнике Обербека : методические указания к лабораторной работе № 9 по физике / сост. В. Б. Демин, В. П. Левченко, К. А. Шумихина, А. Г. Волков. — Екатеринбург : УрФУ, 2012. - 19 с.

Теоретическая часть содержит общие сведения о механике вращательного движения, основных законах динамики, некоторых характеристиках, в частности моменте силы и моменте инерции. Экспериментальная часть включает описание лабораторной установки, конкретных задач, методик измерений и обработки результатов. Приведена форма отчета.

Указания предназначены для студентов всех специальностей всех форм обучения.

Рис. 5. Прил. 2.

Подготовлено кафедрой физики

© Уральский федеральный университет, 2012

1. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Основное уравнение вращательного движения имеет вид

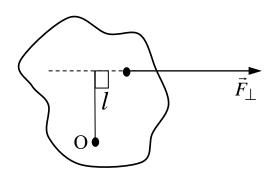
$$\vec{M} = I\vec{\epsilon},\tag{1}$$

где \vec{M} — суммарный момент всех внешних сил относительно оси вращения;

I — момент инерции тела относительно этой же оси;

 $\vec{\epsilon}$ – угловое ускорение тела.

Момент силы \vec{F} , действующей на тело относительно оси вращения, определяется по формуле



(2)

где F_{\perp} – проекция силы \vec{F} на плоскость, перпендикулярную к оси вращения; l – плечо силы – кратчайшее расстояние от оси вращения до линии действия силы (рис.1).

 $M = lF_{\perp}$,

Рис. 1. Пример определения момента силы

Момент материальной инерции точки относительно оси вращения равен

произведению массы m точки на квадрат расстояния r до этой оси:

$$I = mr^2. (3)$$

Вычисление момента инерции твердого тела относительно оси вращения проводится по формуле

$$I = \int r^2 dm = \int \rho \cdot r^2 dV ,$$

где dm и dV – элемент массы и объема тела, находящийся на расстоянии r от оси вращения; ρ – плотность тела в месте расположения элемента dV.

Если тело однородно, т. е. его плотность р одинакова по всему объему, то

$$I = \rho \int r^2 dV. \tag{4}$$

Момент инерции твердого тела зависит от распределения массы относительно оси вращения и является величиной аддитивной. Он определяет инертность твердого тела при вращении.

Вычисление момента инерции твердого тела произвольной формы относительно некоторой оси вращения представляет собой довольно громоздкую в математическом отношении задачу. Экспериментально его можно определить различными методами. Один из этих методов рассматривается в настоящей лабораторной работе.

2. ОПИСАНИЕ УСТАНОВКИ И ВЫВОД ОСНОВНЫХ ФОРМУЛ

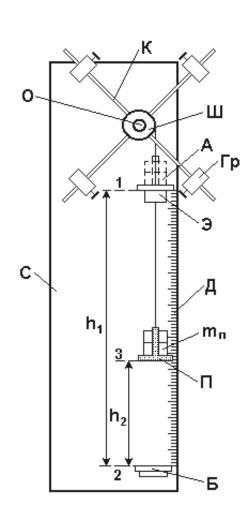


Рис. 2. Эскиз установки

На рис. 2 схематически изображен так называемый маятник Обербека, с помощью которого можно изучать законы вращательного движения. Маятник Обербека состоит из вертикальной стойки C со шкалой D, в верхней части которой крепятся крестовина K и шкив III, жестко насаженные на горизонтальную ось O, закрепленную на двух подшипниках.

На шкив намотана тонкая нить, один конец которой укреплен на шкиве, а к другому привязана платформа Π известной массы m_0 , служащая для размещения перегрузков массой m_n каждый. Шкив с крестовиной могут свободно вращаться вокруг оси O. На крестовине надеты 4 цилиндра Γp .

Момент инерции установки можно изменить, перемещая одинаковые цилиндрические грузы Γp вдоль стержней крестовины.

Платформа Π перед началом опытов помещается на площадку A, удерживаемую в горизонтальном положении электромагнитом \Im .

Внизу на стойке укреплена горизонтальная финишная площадка E, служащая размыкателем электрической цепи установки, управляющей работой электромеханического секундомера.

Уравнение вращательного движения маятника (1) в проекциях на ось OZ (рис. 3) имеет вид

$$M - M_{\rm TD} = I\varepsilon, \tag{5}$$

где M — момент силы натяжения $\vec{T}_{_{\! 1}}$ нити; M _{тр} — момент сил трения, действующих на ось маятника со стороны подшипников; I — момент инерции маятника относительно оси вращения; ϵ — угловое ускорение маятника.

Поскольку масса нити мала и нить практически нерастяжима, натяжение нити одинаково во всех точках ($T_1 = T_2 = T$) и ускорение всех элементов нити одинаково. Момент силы натяжения нити равен

$$M = rT. (6)$$

В этой формуле r – плечо силы T, равное радиусу шкива.

Силу натяжения T нити найдем из второго закона Ньютона для опускающегося груза, записанного в проекциях на ось OY:

$$mg - T = ma$$
,

откуда

$$T = m (g - a), (7)$$

где a — ускорение опускающегося груза;

g – ускорение свободного падения;

m — масса опускающегося груза, равная в общем случае

$$m = m_0 + N \cdot m_n .$$

Здесь m_0 – масса платформы;

 m_n — масса одного перегрузка;

N — число перегрузков массы m_n , установленных на платформе.

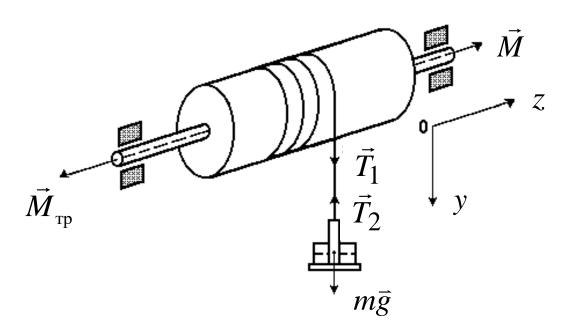


Рис. 3. Схема распределения сил

действующие Поскольку на тела системы силы онжом считать вращение постоянными, шкива И поступательное маятника движение опускающегося груза можно считать равноускоренными, следовательно, ускорение a опускающегося груза можно найти из уравнения равноускоренного движения $h_{\rm l}=at^2/2$, если измерено время t опускания груза с высоты $h_{\rm l}$ (рис. 2):

$$a = \frac{2h_1}{t^2} \,. \tag{8}$$

Подставив выражение (8) в (7), а затем формулу (7) в (6), получим

$$M = r \cdot m \cdot (g - \frac{2h_1}{t^2}).$$

Выражая радиус r шкива через его диаметр d(r=d/2), имеем

$$M = \frac{md}{2}(g - \frac{2h_1}{t^2}). (9)$$

Модуль ϵ углового ускорения вращающейся системы связан с модулем a тангенциального ускорения внешних точек шкива соотношением $\epsilon = a/r = 2a/d$. Следовательно,

$$\varepsilon = \frac{4h_1}{dt^2} \,. \tag{10}$$

Задача 1. Проверка основного закона динамики вращательного движения

В этой задаче предлагается определить графически момент инерции I_0 шкива и крестовины без цилиндров и момент $M_{\rm TP}$ сил трения, убедившись предварительно в линейной зависимости $M=f(\varepsilon)$.

Изменяя массу m опускающегося груза и соответственно время t его опускания, можно варьировать величины углового ускорения ϵ и момента M силы натяжения нити. С учетом знаков проекций векторов на ось OZ (рис. 3) и в соответствии с формулами (1) и (5) выполняется следующая зависимость:

$$M = M_{\rm TD} + I_0 \varepsilon$$
.

По графику этой зависимости при неизмененных I_0 и $M_{\rm TP}$ можно найти их значения.

- 1. С помощью линейки \mathcal{J} , укрепленной на стойке прибора, измерить высоту h_1 опускания груза.
- 2. Намотать нить плотно, виток к витку в один слой на шкив, вращая крестовину против часовой стрелки так, чтобы платформа Π (рис. 2) находилась на столике A, а нить была натянута и расположена вертикально.
- 3. Нажать на правую пусковую кнопку электросекундомера. Одновременно с включением секундомера опускается стартовый столик A и груз начинает падение. После удара груза о финишную площадку B происходит автоматическая остановка секундомера, показания которого необходимо внести в табл. Π . 2.

- 4. Повторить операции 2–3 еще 2 раза. Найти среднее значение времени падения.
 - 5. Проделать операции 2–3 с другими грузами (по 3 раза с каждым грузом): $m_0 + m_n$; $m_0 + 2m_n$; $m_0 + 3m_n$; $m_0 + 4m_n$.
- 6. Усреднить время опускания грузов, рассчитать ε по формуле (10), M по формуле (9) и внести их значения в табл. П. 2.
- 7. На компьютере (или миллиметровой бумаге) построить график $M(\varepsilon)$ (рис. 4). По графику определить момент инерции I_0 шкива и крестовины без цилиндров (тангенс угла наклона прямой) и момент $M_{\rm TP}$ силы трения (начальная ордината) 1 .

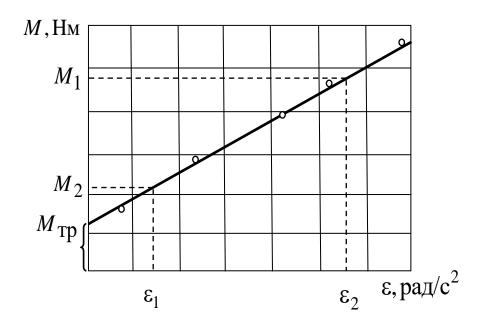


Рис. 4. Примерный вид графика функции $M(\varepsilon)$

Задача 2. Определение момента инерции системы четырех цилиндров, симметрично расположенных относительно оси вращения

¹ При построении графика на компьютере, рекомендуется использование метода наименьших квадратов.

Получим формулу для расчета момента инерции системы. Когда опускающийся груз находится в крайнем верхнем положении *1* (рис. 2), энергия системы «шкив — крестовина — опускающийся груз» определяется лишь потенциальной энергией этого груза:

$$W = mgh_1. (11)$$

В крайнем нижнем положении 2 (рис. 2) потенциальная энергия груза равна нулю, и энергия системы определяется ее кинетической энергией

$$W_2 = \frac{mv^2}{2} + \frac{I\omega^2}{2} \,, \tag{12}$$

где I – момент инерции маятника;

 ω — угловая скорость шкива в момент времени t;

v – линейная скорость груза в положении 2.

Пройдя путь h_1 , груз не останавливается, так как шкив и крестовина продолжают вращаться по инерции, а после удара о площадку E поднимается на некоторую высоту h_2 (положение E, рис. 2). Энергия E системы в этом положении определяется потенциальной энергией груза на высоте E:

$$W_3 = mgh_2. (13)$$

Механическая энергия системы не сохраняется в силу того, что в ней действуют неконсервативные силы трения: $W_3 < W < W_1$. Превращение механической энергии системы равно работе сил трения.

Полагая, что $M_{\rm Tp}={\rm const}$ (на самом деле $M_{\rm Tp}\neq{\rm const}$, особенно в начале движения – из-за застоя), имеем:

$$W_2 - W_1 = -M_{\rm Tp} \varphi_1, \tag{14}$$

$$W_3 - W_2 = -M_{\rm Tp} \phi_2, \tag{15}$$

где ϕ_1 и ϕ_2 – угловые пути, пройденные вращающейся частью маятника соответственно за время опускания и подъема груза и связанные с

соответствующими числами оборотов $N_{_1}$ и $N_{_2}$ шкива и высотами $h_{_1}$ и $h_{_2}$ соотношениями:

$$\phi_1 = 2\pi N_1 = 2\pi \frac{h_1}{\pi d} = \frac{2h_1}{d}; \qquad \phi_2 = 2\pi N_2 = \frac{2h_2}{d}.$$
(16)

Сложив выражения (14) и (15), получим

$$-W_1 + W_3 = -M_{\rm Tp}(\varphi_1 + \varphi_2). \tag{17}$$

Подставив формулы (11), (13) и (16) в уравнение (17), имеем

$$-mgh_1 + mgh_2 = -\frac{2M_{\rm Tp}}{d}(h_1 + h_2),$$

откуда

$$M_{\rm Tp} = \frac{mgd}{2} \cdot \frac{(h_1 - h_2)}{(h_1 + h_2)}.$$
 (18)

Подставив (11) и (12) в (14), получим

$$\frac{mv^2}{2} + \frac{I\omega^2}{2} - mgh_1 = -M_{\rm Tp}\phi_1. \tag{19}$$

Движение груза между положениями l и 2, как уже отмечалось, равноускоренное, следовательно, $v=at; h_1=at^2/2$, откуда $v=\frac{2h_1}{t}$ и $\omega=\frac{4h_1}{td}$.

Заменяя в формуле (19) $M_{\rm Tp}, \, v, \, W$ и $\, \phi_{\rm l} \,$ соответствующими выражениями, находим момент инерции вращающейся системы

$$I = \frac{md^2}{4} \left[\frac{gh_2t^2}{h_1(h_1 + h_2)} - 1 \right].$$

Во всех практических случаях единицей можно пренебречь по сравнению с первым слагаемым в квадратных скобках, тогда

$$I = \frac{md^2}{4} \cdot \frac{gh_2t^2}{h_1(h_1 + h_2)}. (20)$$

Таким образом, для определения I необходимо экспериментально определить $m,\ d,\ t,\ h_1$ и h_2 .

1. На крестовине укрепить четыре одинаковых цилиндра массой m_1 каждый на равных расстояниях от оси вращения. Рекомендуется следующая последовательность установки: одну пару стержней располагают горизонтально, надевают на них два цилиндра на некотором расстоянии от оси вращения, добиваются равновесия системы и закрепляют цилиндры. Линейкой измеряют расстояние 2R (рис. 5).

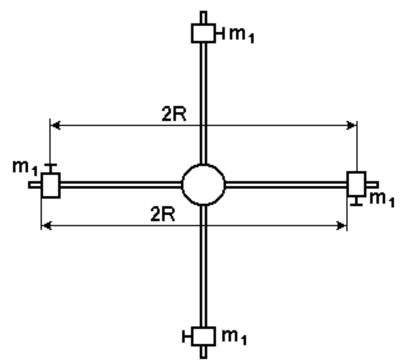


Рис. 5. Схема расположения цилиндров на крестовине

- Затем поворачивают крестовину на 90°, на таком же расстоянии устанавливают еще два цилиндра.
- 2. Установить на платформе несколько перегрузов (три или четыре), намотать нить на шкив, вращая его против часовой стрелки, и измерить время t движения платформы до ее удара о площадку E.
- 3. Не останавливая вращения крестовины, определить по линейке \mathcal{A} , укрепленной на стойке C, высоту h_2 , до которой поднимается платформа (отсчет h_2 вести по нижнему основанию платформы).
- 4. Повторить опыт еще 4 раза, *не меняя числа* перегрузков на платформе. Результаты измерений занести в табл. П. 3.

- 5. По формуле (20) рассчитать момент инерции I вращающейся системы и, используя найденное в предыдущей задаче значение момента инерции I_0 шкива и крестовины, определить момент инерции I_1 четырех цилиндров относительно оси вращения.
- 6. Рассчитать теоретическое значение момента инерции системы четырех цилиндров относительно оси вращения, считая их материальными точками, по формуле $I_2 = 4m_1R^2$, где m_1 масса каждого цилиндра, укрепленного на крестовине; R расстояние от оси вращения до центра масс каждого цилиндра. Полученный теоретический результат сравнить с экспериментальным значением.

ПРИЛОЖЕНИЕ

УРАЛЬСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ Кафедра физики

OT4ET

по лабораторной работе №9
«Изучение законов вращательного движения
на маятнике Обербека»

Студент(ка)	
Группа	
Преподаватель	
Дата	

- 1. Расчетные формулы:
- 1.1. Момент силы натяжения нити

$$M = \frac{\langle d > m}{2} (g - \frac{2h_1}{\langle t \rangle^2}),$$

где < d > - ; $m = m_0 + Nm_{\Pi} -$; N = 0, 1, 2, 3, 4 (число перегрузков); $h_1 -$; g - ;

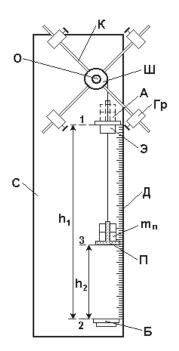
1.2. Угловое ускорение маятника

$$\varepsilon = \frac{4h_1}{\langle d \rangle \cdot \langle t \rangle^2}.$$

1.3. Момент инерции маятника (используется в задаче 2)

$$\langle I \rangle = \frac{m < d >^2 g < t >^2 < h_2 >}{4h_1(h_1 + < h_2 >)},$$

2. Эскиз установки.



3. Средства измерений и их характеристики.

Таблица П. 1

Наименование средства измерения	Предел	Цена	Предел основной
и его номер	измерения или	деления	погрешности,
	номинальное	шкалы	$\theta_{ m och}$
	значение		
Маятник Обербека:			
-линейная шкала			
-электросекундомер			
Штангенциркуль или линейка			

Установка № ...

4. Результаты измерений.

Задача 1. Определение момента инерции I_0 вала и крестовины без цилиндров и момента сил трения

4.1. Массы платформы m_0 перегрузков m_n и их погрешности приводятся в таблице, прилагаемой к установке:

$$m_0 = \dots \qquad \Gamma ; \qquad \Delta_{m_0} = \dots \quad \Gamma ; \qquad m_{\Pi} = \dots \quad \Gamma .$$

4.2. Измерение высоты опускания груза:

$$h_1 = \dots c_{M}; \Delta_{h_1} = 0.5 c_{M}.$$

- 4.3. Измерение диаметра шкива (диаметр шкива и погрешность Δ_d могут быть заданы преподавателем): $<\!d>= \dots$ мм; $\Delta_{<\!d>}= \dots$ мм.
- 4.4. Измерение времени опускания груза, расчет $\,\varepsilon\,$ и $\,M\,$.

Таблица П. 2

Масса опускающегося груза, г	m_o	$m_{1} = m_{o} + m_{n}$	$m_2 = m_o + 2m_n$	$m_3 = m_o + 3m_n$	$m_{\scriptscriptstyle 4} = m_{\scriptscriptstyle o} + 4m_{\scriptscriptstyle n}$
Время опускания груза t , с					
< <i>t</i> >, c					
Угловое ускорение ε , рад/ c^2					
Момент силы натяжения					
M , $H \cdot M$					

4.5. Построение графика $M(\varepsilon)$ (прилагается к отчету), определение I_0 и $M_{\rm TP}$:

$$I_0 =$$
 ;

$$M_{\rm Tp} =$$
 ;

Примечание. Расчет I_0 и $M_{\text{тр}}$ может быть выполнен с использованием метода наименьших квадратов (МНК).

- 4.6. Расчет границ погрешностей результатов измерений.
- а) если использовался метод МНК (обработка результатов на компьютере)

$$\mathcal{E}_{I_0} = \qquad \qquad ; \qquad \mathcal{E}_{M_{\mathrm{TD}}} = \qquad \qquad .$$

б) если метод МНК не использовался, доверительные границы случайных погрешностей рассчитываются по формулам

$$\varepsilon_{I_0} = t_{P,n} \cdot S_{< I_0>} = \qquad \qquad ; \qquad \varepsilon_{M \text{Tp}} = t_{P,n} \cdot S_{< M \text{Tp}>}, = \qquad , \label{eq:epsilon}$$

где средние квадратические отклонения $S_{< I_0>}$ и $S_{< M{
m Tp}>}$ задаются преподавателем, $t_{P,n}$ — коэффициент Стьюдента при доверительной вероятности P=0,95 и числе наблюдений n (в нашем случае n=3).

Неисключенными систематическими погрешностями пренебрегаем. Следовательно,

$$\Delta_{I_0} = \varepsilon_{I_0}$$
;

$$\Delta_{M\text{Tp}} = \varepsilon_{M\text{Tp}}$$
.

4.7. Окончательные результаты:

$$I_0 = (\langle I_0 \rangle \pm \Delta_{I_0}) = (\dots \pm \dots)$$
 kg·m², $P = 0.95$;

$$M_{\text{\tiny TP}} = \left(\left\langle M_{\text{\tiny TP}} \right\rangle \pm \Delta_{M_{\text{\tiny TP}}} \right) = \left(\dots \pm \dots \right) \quad \text{H-M}, \quad P = 0.95.$$

4.8. Выводы.

Задача 2. Определение момента инерции системы четырех цилиндров, симметрично расположенных относительно оси вращения

4.9. Измерение массы цилиндра m_1 (приводится в таблице, прилагаемой к установкам) и массы m падающего груза:

$$m_1=\dots$$
 г; $\Delta_{m1}=\dots$ г. $m=m_0+N\cdot m_\Pi$ (рекомендуется $N=4$).

4.10. Измерение расстояния R от оси вращения до центра тяжести цилиндра на крестовине:

$$R = \dots$$
 cm; $\Delta_R = 1, 1\sqrt{\theta_{\text{och}}^2 + \theta_{\text{otc}}^2} = \dots$ cm.

4.11. Измерение времени t опускания груза и высоты $h_{\scriptscriptstyle 2}$ его подъема.

Таблица П. 3

No	t_i , c	$t_i - < t>, c$	$(t_i - \langle t \rangle)^2$, c ²	h_{2i} , cm	$h_{2i} - \langle h_2 \rangle$,	$(h_{2i} - \langle h_2 \rangle)^2$,
Π/Π					СМ	cm ²

$$< t > = ...$$
 c; $\sum_{i=1}^{n} (t_i - < t >)^2 = ...$ c²;

$$< h_2 > = \dots$$
 cm; $\sum_{i=1}^{n} (h_{2i} - < h_2 >)^2 = \dots$ cm².

Средние квадратические отклонения $S_{< t>}$ и $S_{< h,>}$:

$$S_{} = \sqrt{\frac{\sum_{i=1}^{n} (t_i - < t >)^2}{n(n-1)}} = \dots \quad c; \quad S_{} = \sqrt{\frac{\sum_{i=1}^{n} (h_{2i} - < h_2 >)^2}{n(n-1)}} = \dots \quad \text{cm.}$$

Доверительные границы случайных погрешностей (P = 0.95):

$$\varepsilon_t = t_{P,n} S_{< t>} = \dots$$
 c; $\varepsilon_{h_2} = t_{P,n} S_{< h_2>} = \dots$ cm.

Границы систематической и полной погрешности:

$$\theta_t = \theta_{\text{och}} = \dots$$
 c; $\theta_{h_2} = \theta_{\text{och}} = 0.5$ cm;

$$\Delta_t = \sqrt{\theta_t^2 + \varepsilon_t^2} = \dots$$
 c; $\Delta_{h_2} = \sqrt{\theta_{h_2}^2 + \varepsilon_{h_2}^2} = \dots$ cm.

4.12. Вычисление момента инерции < I > крестовины с четырьмя цилиндрами по формуле п. 1.3:

$$\langle I \rangle =$$
 $=$ $\kappa \Gamma \cdot M^2$.

4.13. Расчет момента инерции $< I_1 >$ четырех цилиндров:

$$< I_1 > = < I > - < I_0 > = \dots$$
 KG·M²

4.14. Вычисление границы относительной погрешности определения І:

$$\gamma_{I} = \frac{\Delta_{I}}{\left\langle I \right\rangle} = \sqrt{\frac{\left(2h_{1} + h_{2}\right)^{2}}{\left(h_{1} + h_{2}\right)^{2}} \left(\frac{\Delta_{h1}}{h_{1}}\right)^{2} + \frac{\Delta_{h1}^{2}}{\left(h_{1} + h_{2}\right)^{2}} + \left(\frac{\Delta_{h2}}{h_{2}}\right)^{2} + 4\left(\frac{\Delta_{t}}{t}\right)^{2} + 4\left(\frac{\Delta_{d}}{d}\right)^{2} + \left(\frac{\Delta_{m}}{m}\right)^{2}},$$

где $\Delta_m = 0,2$ г.

$$\gamma_I = \sqrt{}$$

4.15. Граница абсолютной погрешности определения I равна

$$\Delta_I = \gamma_I < I > = \dots$$
 KG·M².

4.16. Граница относительной погрешности результата измерения момента инерции I_1 четырех цилиндров вычисляется по формуле

$$\gamma_{I_1} = \frac{\Delta_{I_1}}{\langle I_1 \rangle} = \sqrt{\left(\frac{\Delta_{I_0}}{\langle I_0 \rangle}\right)^2 + \left(\frac{\Delta_I}{\langle I \rangle}\right)^2} = \dots$$

4.17. Граница абсолютной погрешности результата измерения равна

$$\Delta_{I_1} = \gamma_{I_1} < I_1 > = \dots \quad \text{K} \Gamma \cdot \text{M}^2.$$

4.18. Окончательный результат:

$$I_1 = (\langle I_1 \rangle \pm \Delta_{I_1}) = (\ldots \pm \ldots) \quad \text{kg-m}^2, \quad P = 0.95.$$

4.19. Вычисление теоретического значения момента инерции четырех цилиндров относительно оси вращения в предположении, что они являются материальными точками:

$$I_2 = 4m_1R^2 = \dots \text{ KG-M}^2.$$

где m_1 — масса цилиндра; R — расстояние от оси вращения до центра тяжести цилиндра, расположенного на крестовине.

4.20. Сравнение результата I_2 с полученным из опыта I_1 и оценка относительной погрешности, возникающей при допущении, что цилиндры являются материальными точками:

$$\delta = \left[\frac{\langle I_1 \rangle - I_2}{\langle I_1 \rangle} \right] \cdot 100 \%. = \dots$$

4.21. Выводы.

Учебное издание

ИЗУЧЕНИЕ ЗАКОНОВ ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ НА МАЯТНИКЕ ОБЕРБЕКА

Составители: **Демин** Владимир Борисович **Левченко** Виталий Петрович **Шумихина** Кямаля Арифовна **Волков** Аркадий Германович

Редактор *В. И. Новикова* Компьютерный набор *Н. Н. Суслиной*

Подписано в печать « » 20 г. Формат $60 \times 84\,$ 1/16. Бумага писчая. Плоская печать. Усл. печ. л. 1,1. Уч.-изд. л. 0,8. Тираж 100 экз. Заказ

Редакционно-издательский отдел УрФУ 620002, Екатеринбург, ул. Мира, 19 E-mail: rio@ustu.ru

Отпечатано в типографии Издательско-полиграфического центра УрФУ 620000, Екатеринбург, ул. Тургенева, 4 Тел.: +7 (343) 350-56-64, 350-90-13 Факс: +7 (343) 358-93-06

E-mail.: press.info@usu.ru